Triangle de Héron

Un triangle est appelé triangle de Héron (ou triangle héronien) si chacune des longueurs de ses côtés ainsi que son aire sont exprimés en nombres entiers naturels non nuls. En condensé, c'est un triangle entier d'aire entière.

D'après la formule de Héron il s'agit de déterminer les solutions en nombres entiers naturels de l'équation diophantienne en prenant .

On attribue à Héron d'Alexandrie la solution [1].

Les trois premières solutions ordonnées par la croissance de leur plus grand côté sont (3, 4, 5, 6), (5, 5, 6, 12), (5, 5, 8, 12).

Les suites donnant les valeurs successives de sont les suites (OEISA055594 , OEISA055593, OEISA055592 OEISA055595).

Il existe des méthodes pour déterminer des triangles de Héron[2].

Voir aussi

Références

  1. (en) K. R. S. Sastry, « Heron triangles: A Gergonne-Cevian-and-median perspective », Forum Geometricorum, vol. 1, , p. 17-24 (lire en ligne)
  2. Gérard Villemin, « Triangles héroniens », sur http://villemin.gerard.free.fr (consulté le )
  • icône décorative Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons – Attribution – Partage à l’identique. Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.